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Abstract

In this study, we introduce a new subclass of bi-univalent functions denoted

by Tg P5(2, 8, v), using Euler polynomials and Hurwitz-Lerch Zeta function.

Subsequently, an estimation of coefficient bounds and the Fekete-Szego
inequality. Additionally, some new results are shown after specializing in the
parameters employed in the main results.
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1.Introduction and Previous Studies
The theory of univalent functions has been one of the central topics in geometric
function theory, owing to its deep connections with complex analysis and its
numerous applications. An analytic function f in the open unit disk
U={z€eC:|z|<l} is said to be a univalent function if it is one-to-one; the class of all
such functions is usually denoted by S (see [1]). In 1967, Lewin introduced the
concept of bi-univalent functions as a natural extension of the popular class of
univalent functions S. A function fis said to be bi-univalent if both f and its
inverse are univalent in the open unit disk U, which is denoted by ). Recently,
many authors have studied this type of class and investigated upper bounds for the
coefficients and the Fekete—Szegd inequality of functions belonging to various
subclasses of bi-univalent functions (see [2—6]).
Motivated by the important role played by special polynomials in defining various
subclasses of univalent functions and bi-univalent functions, we turn our attention
to Euler polynomials, these polynomials, which originate from the pioneering
work of Leonhard Euler in the eighteenth century, In recent years, Euler
polynomials have attracted considerable interest in geometric function theory,
particularly in the study of analytic, univalent and bi-univalent functions. Due to
their wide applicability, several authors have derived sharp coefficient estimates
for different subclasses of analytic and bi- univalent functions associated with
Euler polynomials. For instance, Amourah et al. [7] and Frasin et al. [§]. In this
paper, the researcher’s generalization a new subclass of the bi-univalent function
by Hurwitz- Lerch Zeta function and Euler polynomials, estimated the coefficients
bounds for [a_2 |and |a_3 | and solve Fekete-Szegé [a 3-pa 272 |.
Let A denote the class of all analytic functions in the open unit disk U and
normalized by f(0) = f'(0) — 1 = 0 of the form:

f(z) =z + X2, a,z™ (D
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The Koebe one-quarter theorem see [1] offer that every univalent function f € S
contains a disk of radius G), the inverse of f € U is a univalent analytic function

defined on the disk by U}, := {z: z€C and|z| <p;p= i}

Therefore, for each function f(z) = w € S, there is an inverse function f ~1(w) of

f(z) defined by
f71(f(z)) = z(z € Wand f(f*(w))= w(w € [Up),
where
g(w) = f~H(w)
=w —a,w? + (2a5 — a;)w> — (5a3 — 5a,a; + a,)w* + -, (2)

z
1-z2

An example of a function belonging to the class Y is h(z) = i but h(z) =
does not belong to the class ) (see [9]).

The Euler polynomials ®; (v), similar to other polynomial families, can be derived
using specific generating function (see [11,12]) as the following:

hv
K(v,h) = 2

eh+1

) h!
=220 ;(v) F’G< v<1,|hl < 11),

an explicit formula for ®; (v) is given by
D, (v) = Lo% Lo (D (D + ). (3)
Now @;(v) in terms of @, , obtained from (3) as:
. by (i 1 i-u
oW =T (D) (v-1) .

Initial Euler polynomial values are:

CI)() (V) =1;

q)l — 2V2—1;

D, = vZ—v; (4)
®, = 4V3—6V2+1;

4
vi—2v3 4.

o,

Definition 1.1.[10] For analytic functions f and g in the unit disk U, we say that a
function f is subordinate to a function g, dented by f < g or f(z) < g(z), if there
exists a Schwarz function w € A in the unit disk U such that

f(z) = g(w(z)),(z € U). Also, if g is univalent in U, then f < g if and only if
f(0) = g(0) and f(U) c g(U).

2.Materials and Methods
Lemma 2.1. [1] If p € P,then |c, | < 2 for each n € N, where P is the family of
analytic functions in U such that

Re{p(2)} >0, p(z) =1+ c;z+c,z* + -, (z€ U).
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Nagat & Darus ([14,15]) introduced the generalized integral operator associated
with the general Hurwitz- Lerch Zeta function, denoted by 3¢, f(z) forf € A as
follows:

Fors € C,b € C — Zj the generalized integral operator Jg,,f(z): A — A is defined
by

rk+1Drz-uw) ( b

S
F(k+1-a) k—1+b) akzk (Z €Ua+234, ) (5)

Jopf(2) = z+ X,

Many other works on analytic and univalent functions related to this operator can be
see ([16]- [19)).

By using a generalized integral operator J¢f(z) in (5), a new subclass of bi-
univalent functions is considered as the following.

For seC,beC—Z;and a # 2,3,4, ..., a function f € ) and of the form (1) is

said to be in the subclass T;‘ /b

(1-0(3%, f(z) N
Re {— (js'b )+x(3:‘,bf(z)) + 6z(:”s:fbf<z>)"} <K(v.2) =

2o ®;(v) ?—!, (6)
and

(A, 8, v)if the following conditions are satisfied:

w

(1-0)(3gLew) ~u N ~a "
Re {M+ )\(\sslbg(w)) + Sw(J5pg(w)) } < K(v,w) =

2,0, %, (7)
whereA>16> 0, %<VS12,W €EUandg=1f"1.

It is of interest to note that by taking a = 0 and s = 0 in the subclass Tg PS5}, 8,v),
we state the following subclass Fs. (A8, v).

Remark 2.2.[7] If the next subordinations are satisfied fora functionf € U given
Re{(1 - N 242 (2) + 62" (1)} < K(v,2) = 52, &, (v) £,
and .
Re{(1—2) 5% 4 2g'(w) + Swg" (W)} < K(v,w) = 52, &;(v) 2,

whereA > 16 > 0,§<vslz,w €EUandg="f"1.

In mathematics, the Fekete—Szeg0 is an inequality for the coefficients of univalent

functions found by Fekete and Szegd [13] for the estimates of |a; — pa3| when a; =
1 with p real. The well-known result due to them states that if f € A, then

4p—3 ifu=>1,
-2 .
|a3—ua§|3 1+2exp(rt) ifo<u<i,
3—4p ifp<O.
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3.Results and Discussion

For a function f € ), we provide the coefficient estimations and solve Fekete-Segd
o,b.s

for a new class Fy (A,8,v) in the following theorem.

Theorem 3.1. Let f € ), given by (1) and belong to the class Tg’b's (A, 8,v), where
A>1.6>0, %<VS 1,z,w € Uand g = f~! .Then

_1)3
|azl S b (ZV 1) b 2|’
2|(1+2?\+68)(2v—1)2(pg" S_2(142+28)2 (V2 - 3v+1) (9%P) |

la.| < 2v—1 (2v-1)2
3 2(1+2x+65)(p 4(1+A+28) ( abs) 27
and
| llaz| = ,
I{ 2v—-1 __ if 0< |1 _Il| (2v-1)
4 (1+22+68) 3" 2|(1+2/1+66)(2v 12 @EPS 2 (1+2+28)% (v? —3v+1)( a.b
1 3
2|1 — | o) o if 11—l Gv-
2|(1+2A+65)(2v D2 QPS5 2(1+2+28)2(v2 -3v+1) (@) 2|(1+27\+68)(2V—1)2(pg'b's—2(1
where
abs _ IAre-o (L) and  ©*P* _ r@re-o (L) s
k=2 7 1(3-a) \b+1 Pr=3 = r(4-o) \b+2/°
Proof.

Let f(z) € Tg’b's (A, 8,v), from (6) and (7), we have

Jsb()

1-2 + A(J5pf(@) + 82(35,f(2)" < K(v,2).
by applymg some calculating, we obtain

1-2A)——- Sspf(2) + A3 f(2)" + 82(3g L f(2)"

_ (1+A+28)F(3)r(2—a) (_)5 (1+22+68) T (DT (2-) (L)S 2, .
=1+ rG-o be1) 2 (o) bra) BZ TS
K(V,s(z)) (8)

and

a A)‘Ssbg( M) (S, B+ SW(SEg(W))" < K(v,s(w)

Followmg the same procedure
Sep8(w)

(1—=2)=—+A(3peW) + W(JspLg(w))" =1 -

(1+x+28)r(3)r(2 @ (b \° (1+22+68)T(HT(2-) ( b \® 2 2,
r(3-a (b+1) QW r(4—a) (b+2) (2a; —ag)w” + -+ <

K(v,s(w)) (9)

Assume that there are two functions r, ,r,:U — U with r,;(0) =r,(0) = 0 and
Ir;(z)| <1, |r,(w)| < 1forall z,w € U. So, we can define y,0 € P as:

(z)+1 '
Y()_?:;) 1+Y1Z+YZZZ+Y323+“‘;|Y1|S2,1EN.
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then
_y(@) -1
n(z) = v(z) + 1
2 3
Y Y2 Y 1 LY
S G CR (U B
+ - (10)
and
o(w) = % =14+ o,w+o,w?+0,w?+-,|o;| < 2,i €N.
2
then

— 2 3
r,(w) = ZEVWV§+1 = %W + (2 —ﬁ)w2 + %(03 — 0,0, t+ %)w3 +
Using (10) and (11), we get
(D (0] [0}
K(v,1,(2)) = @y (v) + L2 Yl 2+ (B2 (y, - 1)+ 220y2) 52 4 (B2 (y, —

2 8 2

3
Y1Y2 + T) + (Y1Y2 - —) + 2 (V) yi)
... (12)
and '
K(v,r,(w)) = X2, @; (V) Vlv—, =0, (v) + q)lz(v) o,w+ (CDIZ(V) (02 - %) +
(DZT(V)Gi)WZ (q)lT(V)(G?’ - 0,0, t %i) +%(0102 - 672) +
o)W (13)

From (6), (7) and the prev1ous two equations (10), (11), we have
(1+A+28)r(3)r(2—o) ( )
r(3-a) b+1/) 2
@, (v)

1TY1 (14)

(1+21+68)T(4)T(2- ) L)S _q’l(")( _V_l)
r(4-o) (b+2 3=, V275 +

_ (+A+28)rere-o (L)S . =

r(3-o) b+1) “2 7
L6, (16)
and

(14+21+68)I(4)F'(2-a) [ b _ 1(V) _ 0y
r(4-a) (b+2) (223 — a;) = (02 2)+

229 57 (17)
From (16), we have
(1+21+26) (p“bs = —q)lT(v)ol
Adding two equations (14) and (16) and some simplifying, we obtain

Y1 = —0; and Y1
of (18)
and
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2(1 421+ 28)? (cp“bs) 2= CD(V)( +

07) (19)
2 P (V) (v] + 07)

8(1 + A+ 28)2 (")
Adding (15) to (17), we get

8(1+2x+ 68)cpab a2 =20,(v)(0, +v,) + (y2 + 62) (CDZZ(V) — CD1(V)>

by (18), we have
8(1+ 21 + 68)@L™%a% = 20, (V) (0, +V,) + V(P (v) —

20,(v)) (20)
Also, applying (18) in (19), we have
vi=
4(142426)* (9§ 0%) a2 21)
5 (v)
Replacing y? in (20)
a% — d>3(v)(0'2+y2) _
2[2(1+21+68) 9P V3~ (141+28)2(932° ) (0, (v) 200, W)
la,|? = CHOIEAEAD

2
2|2(1+22+65) 9% P07 (v)~(1+2+28)% (952%) (@, (V) ~20, ()|
Applying (4) and Lemma 2.1, we obtain

(2v-1)°
la,| < . T
2|(1+2A+68)cp§" S (2v-1)2-2(141+28)%( 9% 'S) 2

subtracting (17) from (15), then view (18) and after doing some calculations, we
have

8(1 + 21 + 68)>>%a2 — 8(1 + 21 + 68) @ %a, = 20, (V) (0, — v,) +
(Y1 - 01) ( 29 _
@)

then,

a; = a3+
@, (v)(0,-Y,)
4(1+21+68) 3PS (22)

From (19), we get

_ 2T (v1) O, (V) (0,-Y,)
(1421 +28)2(%bs) | 4(1+2A+68) 5"

Appling (4) and lemma 2.1, we have
la.| < (v-1* 2v-1
57 4(1+A+25)2((pg'b'5)2 2(1+21+68) @3PS’
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From (22), we obtained

— 2 _ q)l(V)(O'z—yz) _ 5
a3 28 2 4(1+27\+68)(pg‘b'5 + (1 u)az
a; —pa; =
@, (v)(o,—-v,) (1—|J.)¢°i(v)(o-2+y2)

b, 2
AAFA68)0T% T 2l5(1421468) 9% P50 (W)~ (142+28)2(930°) (0, (v) -2, ()]

By using assist (4) in conjunction with the triangular inequality,
we get:

lag — paj | < ,
2v—1 [(1-pw|(2v-1)

,b, 2
2(1+22+68) 3™ 2|(1+2}\+68)(p§“b‘s (2v—1)2—2(1+A+26)2(<p§"b'5) (v2—3v+1)|

lag —paj | <

2v—1 (2v-1)3
A+68 “‘b's+|(1_u)| 2 ab 2,2 b,s\?
2(1+21+68) ¢ 2|(1+2/1+66)(2v—1) 3" -2(142428)* (v —3v+1)(<p§" '5) |
If
(2v-1)3 2v-1
|(1_H)| 2 ab > 2 b.s\2 = (14+21+68) &P’
2|(1+2A+68)(2v—1) @IPS_2(142+28)% (v —3v+1)(<p‘2’" 'S) | 2(1+2A+606) @
we obtain
|a —_ uaz | L
3 217 (1+20468) 2P
And if
(2v-1)3 2v—1
|(1_ H)| b b2 = o,b,s’
2|(1+2/1+66)(2v—1)2<p‘3’" S 2(14 2+ 28)2(v? 30+ 1) (9% P) | 2(1+22+68) @3
we obtain

(2v-1)3

|a _ll32|§2|(1—u)| |
3 2 2|(1+22+66)(21)_1)2‘1’?'17'5_2(1+1+25)2(v2—3v+1)((p£"-b-5)2|

This completes the proof.

a,b,s

=1, and ;" = 1in Theorem 3.1, we have

o,b,s

When we set @,

Corollary 3.2. [7] Let f € Y, given by (1) be in the class Tg’b'o (A, 8,v) where,
A>0,86> 0,§<VS 1 zw€ Uand g=f"1 then

Ia | < (ZV—1)3
21 = 4 21(1+22+68) (2v—1) 2=2(1+A+28)2(v2—3v+1) |’

2v-1 (2v-1)?
2(1+2A+68)  4(1+A+28)%’

las| <

and

|
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2
|la; —paz| <
2v—1
(1+2A+68)

(2v-1)° 2v—1
2|(1422+668) 2v-1)2-2(1+1+28) 2(v? -3v+1) | — 2(1+2Ar+68)’
(2v-1)3

if [1—pl > -

21(1421468) (2v—1)2-2(142+428) 2(v2-3v+1)| — 2

if 0<|1—pl

(2v-1)3
21(14+21468) (2v—-1)2-2(14A+28)2(v3-3v+1)|

2|11 -yl

When we set A = 1 in corollary 3.2, we get the next remark.
Remark 3.3. [7] Let f € )’ given by (1) in the class Tg’b'o (1,€,v) where, § = 0,% <
v<1zweUandg=f""' then

|a | < (2V—1)3
21 =/ 213(1+26)(2v-1)2-8(1+8)2(v®=3v+1) |’

2v—1 (2v-1)?
<
|a3| = 6(1+28)  16(1+6)2 ’
and
lag — pazl <
2v—1 . (2v-1)° 2v—1
3(1+26) if 0<|1—ul 213(1+28) 2v-1)%2-8(1+6)2(v? -3v+1)| — 6(1+28)’
_\3 —_1)3 -
211 — Sl 11— 4l (2v-1) 2v-1

213(14+28) (2v-1)2-8(146)% (v?3-3v+1)| 213(14268) (2v-1)2-8(1+8)2(v2 -3v+1)| — 6(1+28)

When we set § = 0 in corollary 3.2, we get the next remark.
Remark 3.4.[7] Let f € ), given by (1) in the class iFg'b'O (4,0,v) where, 1 = 0, % <
v<1zweUandg=f""' then

(2v-1)3
Iazl S \/2|3(1+2/1) (2v-1)2-2(1+ )2 (2% -3v+1) |’
2v-1 (2v-1)2

|a3| = 2(1421)  4(A+D)?’
and
la; — paZ| <
2v—1 . (2v-1)3 2v—1
< —_
(1+22) if 0<[1—ul 2131+ 20) 2v—1) 2 —2(1+0)?(vV?=3v+1)| — 2(1+20)°
_1\3 —~1)3 —
21—yl v if |1 — pl (2v-1) 2v-1

213(1+20) (2v-1)2=2(1+1) 2 (v2-3v+1)| 213(1+20) (2v-1)2-2(1+A) 2(vZ=3v+1)| — 2(1+2))

When we set § = 0, and A = 1 in Corollary 3.2, we get the following remark.
Remark 3.5. [7] Let f € Y, given by (1) in the classfg’b'o (1,0,v) where, § = 0,% <
v<1zwe€Uandg=f"1then

(2v-1)°
|a2| S 2 Y
2|4v? +12v 5|

2v—1 n (2v-1) 2,

|a3| S 16

and
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la; — paj|
[ 2v—1 (2v-1)3 2v—1
I 1f0S|1—u| 2 < ,
<4 2|4v2% +12v — 5| 6
- (2v—1)3 . (2v—1)3 2v—1
Lle—ul if [1— p >
2|4v? + 12v — 5| 2|4v? +12v — 5| 6

4.Conclusion

Special functions and polynomials are used in many differential mathematical and
scientific fields that have recently been researched. Then, finding the upper bounds.
Motivated by these developments, the present work introduces a new subclass of bi-
univalent functionsassociated with Euler polynomials through a generalized integral

lazl. las | g

operator. By employing this operator, we derive upper bound for
lag — pail

Moreover, the results highlight the effectiveness of Euler polynomials in addressing
coefficient-related problems for bi-univalent functions, leaving further sharpness

investigations as an open problem for future research.
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